
GGFGrid
Troubleshooting

Grid Troubleshooting Issues

Distributed Systems Department
Lawrence Berkeley National Laboratory

Brian L. Tierney, Dan Gunter, Jason Lee
bltierney@lbl.gov, dkgunter@lbl.gov

http://dsd.lbl.gov/DMF/

GGFGrid
Troubleshooting

The Problem

• Assume a Grid job is:
– submitted to a resource broker, uses a reliable file transfer service

to copy several files, then runs the job.
• This normally takes 15 minutes to complete. But…

– two hours have passed and the job has not yet completed
• What, if anything, is wrong?

– Is the job still running or did one of the software components crash?
– Is the network particularly congested?
– Is the CPU particularly loaded?
– Is there a disk problem?
– Was a software library containing a bug installed somewhere?

GGFGrid
Troubleshooting

Example: EU DataGrid Components

GGFGrid
Troubleshooting

Good Troubleshooting is Essential

• Grids are getting larger and more complex
– More components = Higher probability of failure

• Individual components may be very robust
– But, Combination of many robust components not

necessarily robust
– Failures can be very hard to detect (eg.: TCP problems)

• Complex troubleshooting is part of the fundamental nature
of a service oriented architecture

GGFGrid
Troubleshooting

The Need for Better Troubleshooting

• From the Grid3 Lessons Learned document
– http://www.ivdgl.org/grid3/documents/document_server/uploaded_documents/doc--760--Lessons_V8.doc

• 30% failure rate for ATLAS and CMS simulations
– especially for the long jobs (more than 4 or 5 hours)
– 90% of the failures were caused by problems at the computing site:

• disk filling errors, gatekeeper overloading or network interruptions
• “another reason for the job failures came the middleware itself; many glitches were

detected when we ran large numbers of production jobs…”
• “There were many instances of very heavy CPU load on site head/gatekeeper nodes.

This was in some cases attributable to the number of jobs being submitted to a site. In
other cases it appears to be due to the monitoring services running on the gatekeeper
node. In other cases it looks like some daemons may have “run amok”. At present our
diagnostic tools are lacking for being alerted to and being able to understand the
causes.”

• “While we were successful in running all applications fairly stably across many of the
Grid3 sites in most cases each application had to be debugged on each site to
achieve this.”

• From the Grid3 Summary Presentation:
– “The trouble shooting capabilities of the user need to be improved

• Currently users have log files to help, but it’s time consuming.
• Improve the tools to diagnose problems”

GGFGrid
Troubleshooting

Why is troubleshooting hard?

• There are frameworks available to access system monitoring
information
– Ganglia, MonaLisa, MDS, etc.

• There are several methods to handle application instrumentation
– syslog, log4j, SvPablo, printf, etc.

• But, no integration between the two:
– No common data models
– No common data formats
– No common aggregation and collection mechanisms
– No common analysis and visualization tools

GGFGrid
Troubleshooting

Solution

• An End-to-End instrumentation AND monitoring framework:
– instrumentation tools (application, middleware, and OS

monitoring)
– host and network sensors (host and network monitoring)
– sensor management tools
– monitoring data publication service
– monitoring data archive service
– analysis and visualization tools

• Ability to correlate data from many sources

– protocols for describing, exchanging and locating monitoring
data

• This is the goal of the LBNL NetLogger Toolkit

GGFGrid
Troubleshooting

Several Missing Pieces

• Grid Workflow ID’s
– Needed to correlate events

• Common data model
• Automatic instrumentation
• Data discovery

– need to easily locate all the instrumentation and monitoring
data related to given Grid Job.

• Better Analysis Tools

GGFGrid
Troubleshooting

A
pp

lic
a t

io
n

E
v e

nt
s

Successful
Job Run

pyGlobusUrlCopy.put.end
pyGlobusUrlCopy.put.transferStart

pyGlobusUrlCopy.put.start

pyGlobusJobRun.end
jobManager.end

jobManger.jobState.done
gridJob.end

gridJob.start
jobManager.jobState.active

jobManager.jobState.pending
akentiAuthorization.end

akentiAuthorization.start
gateKeeper.end

jobManager.start
gateKeeper.start

pyGlobusJobRun.start

pyGlobusUrlCopy.get.end
pyGlobusUrlCopy.get.transferStart

pyGlobusUrlCopy.get.start

Time

C
op

y
in

pu
t d

a t
a

C
op

y
ou

tp
ut

 d
at

a
R

un
 G

rid
 J

ob

Job error
during
gridJob

Connection setup
and authentication

Data transfer

Waiting in PBS
queue

Job running

Using Grid Workflow IDs to Generate
a Job “Lifeline”

GGFGrid
Troubleshooting

Correlation of Application
Instrumentation and CPU Monitoring

GGFGrid
Troubleshooting

Common Data Model

• A common log format very useful, but a simple common
data model is a fundamental requirement for analysis of
independent data sources.
– Mapping between disparate data models is difficult

• much more difficult than format translations
– Needed to be able to perform relational DB queries
– Needed for analysis tools

• Various GGF working groups are addressing this:
– Discovery and Monitoring Event Descriptions WG

• http://dsd.lbl.gov/damed/
– Network Measurements WG

• http://dsd.lbl.gov/NMWG/

GGFGrid
Troubleshooting

Automatic Instrumentation

• Busy programmers rarely get around to properly instrumenting their
code

• No standard instrumentation formats / methods
• We need automatic instrumentation tools that can be applied to

deployed software components
– Compiled languages (C, C++, Fortran, etc.)

• tools should work on object files and not require access to source code
if possible.

– Interpreted languages (Python, Java, etc.)
• introspection capabilities of the language can be used to provide run-

time control of instrumentation points.
– At a minimum, we need to wrap Grid components with simple

start/stop instrumentation wrappers
– Use of automatic methods helps enforce a standard data model

and standard format
– Use of visual programming languages / toolkits with built in

instrumentation will help

GGFGrid
Troubleshooting

What should be done
in the short term?

• It is essential to be able to do Grid troubleshooting soon
– Many application domains are now looking into using the Grid
– 70% success rate is not good enough!

• Simple, high payoff items
– Start using Grid Workflow IDs for correlating data
– Wrap all Grid components with start/end instrumentation wrappers

• Less simple, but important items
– Monitoring frameworks and instrumentation mechanisms should be

merged into a common framework (e.g.: NetLogger)
– Design a common data model for monitoring and instrumentation

data
– Use of higher level application frameworks will help get standard

instrumentation deployed

	
	The Problem
	Example: EU DataGrid Components
	Good Troubleshooting is Essential
	The Need for Better Troubleshooting
	Why is troubleshooting hard?
	Solution
	Several Missing Pieces
	Using Grid Workflow IDs to Generate a Job “Lifeline”
	Correlation of Application Instrumentation and CPU Monitoring
	Common Data Model
	Automatic Instrumentation
	What should be done in the short term?

